# Synthesis and Structural Characterization of Some Diorganotin Complexes of $\mathbf{N}$-(3, 5-Dibromosalicylidene)- $\alpha$-amino Acid and their Diphenyltin Dichloride Adducts 

Lai Jin TIAN ${ }^{1}$, Zhi Cai SHANG ${ }^{1}$ *, Xi Jie LIU $^{2}$, Qing Sen YU ${ }^{1}$<br>${ }^{1}$ Department of Chemistry, Zhejiang University, Hangzhou 310027<br>${ }^{2}$ Institute of Chemical Reaction Engineering, Zhejiang University, Hangzhou 310027


#### Abstract

The title complexes, $\mathrm{R}^{\prime}{ }_{2} \mathrm{Sn}\left(3,5-\mathrm{Br}_{2}-2-\mathrm{OC}_{6} \mathrm{H}_{2} \mathrm{CH}=\mathrm{NCHRCOO}\right)$, and their diphenyltin dichloride adduct, $\mathrm{R}^{\prime} \mathrm{Sn}\left(3,5-\mathrm{Br}_{2}-2-\mathrm{OC}_{6} \mathrm{H}_{2} \mathrm{CH}=\mathrm{NCHRCOO}\right) \cdot \mathrm{SnPh}_{2} \mathrm{Cl}_{2}$, were synthesized and characterized by elemental analysis, IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and X-ray single crystal diffraction. The structural features of the compounds were described.


Keywords: Diorganotin complexes, molecular adduct, crystal structure, $\alpha$-amino acid Schiff base.

The organotin complexes with Schiff base derived from $\alpha$-amino acid continue to receive attention owing to their structural feature and biological properties, especially antitumour activities ${ }^{1-5}$. Studies ${ }^{2,4}$ have shown that the diorganotin complexes with salicylidene- $\alpha$-amino acid or (2-hydroxynaphthalidene)- $\alpha$-amino acid Schiff bases are the isolated monomeric, with the tin atom in a distorted trigonal bipyramid and the carboxylate moiety in the tridentate ligand in unidentate mode. Thus the free carbonyl oxygen can coordinate a second Sn -containing species and form the molecular adducts. In this paper, we report the synthesis and structural characterization of some diorganotin complexes of N -(3,5-dibromosalicylidene)- $\alpha$-amino acid and their 1:1 molecular adducts with diphenyltin dichloride, a novel dinuclear organotin compounds. The reaction equations were as follows:

$$
\begin{gathered}
\mathrm{R}_{2}^{\prime} \mathrm{SnCl}_{2}+3,5-\mathrm{Br}_{2}-2-\mathrm{HOC}_{6} \mathrm{H}_{2} \mathrm{CH}=\mathrm{NCHRCOOK} \longrightarrow \mathrm{R}^{\prime} \mathrm{Sn}\left(3,5-\mathrm{Br}_{2}-2-\mathrm{OC}_{6} \mathrm{H}_{2} \mathrm{CH}=\mathrm{NCHRCOO}\right) \\
\mathbf{1} \\
\mathbf{1}+\mathrm{Ph}_{2} \mathrm{SnCl}_{2} \longrightarrow \mathrm{R}_{2}^{\prime} \mathrm{Sn}\left(3,5-\mathrm{Br}_{2}-2-\mathrm{OC}_{6} \mathrm{H}_{2} \mathrm{CH}=\mathrm{NCHRCOO}\right) \cdot \mathrm{SnPh}_{2} \mathrm{Cl}_{2} \\
\mathrm{R}=\mathrm{H}, \mathrm{Me}, i-\mathrm{Pr}, i-\mathrm{Bu}, s-\mathrm{Bu}, \mathrm{Bz} ; \mathrm{R}^{\prime}=n-\mathrm{Bu}, \mathrm{Cy}, \mathrm{Ph} .
\end{gathered}
$$

## Experimental

Preparation of ligand: Monopotassium salt of N-(3,5-dibromosalicylidene)- $\alpha$-amino acid was prepared by the condensation reaction of potassium salt of $\alpha$-amino acid with 3,5 -di-

[^0]bromosalicylaldehyde in a $50 \%$ ethanolic solution at $60^{\circ} \mathrm{C}$.
Preparation of complexes 1: Into 30 mL dry benzene, $2{\mathrm{mmol} \mathrm{Et}_{3} \mathrm{~N}, 1.5 \mathrm{mmol}, ~}_{\text {1 }}$ ligand and 1.5 mmol diorganotin dichloride in 30 mL dry benzene were dropped. The mixture was refluxed for 3 h , and then filtered. The yellow filtrate was concentrated in a rotary evaporator. The yellow product obtained was recrystallized from chloroformhexane ( $1: 1, \mathrm{v} / \mathrm{v}$ ). The results were listed in Table $\mathbf{1}^{6}$.

Preparation of adducts 2: A dry benzene solution of $\mathrm{Ph}_{2} \mathrm{SnCl}_{2}(0.69 \mathrm{~g}, 2.0 \mathrm{mmol})$ was added dropwise to hot benzene solution of the complex $1(2 \mathrm{mmol})$. The reaction mixture was refluxed for 2 h , and excess solvent was removed under reduced pressure. The yellow solid thus obtained was washed several times with hot hexane and recrystallized from chloroform solution. The results were shown in Table $\mathbf{2}^{7}$.

Table 1 The yield (\%) and melting point $\left({ }^{\circ} \mathrm{C}\right)$ of complexes 1

| No. | R | $\mathrm{R}^{\prime}$ | mp | yield | No. | R | $\mathrm{R}^{\prime}$ | mp | yield |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| $\mathbf{1 a}$ | H | $n-\mathrm{Bu}$ | $128-9$ | 54 | $\mathbf{1 i}$ | $i-\mathrm{Bu}$ | $n-\mathrm{Bu}$ | $112-4$ | 57 |
| $\mathbf{1 b}$ | H | Ph | $146-7$ | 70 | $\mathbf{1 k}$ | $i-\mathrm{Bu}$ | Ph | $136-7$ | 70 |
| $\mathbf{1 c}$ | H | Cy | $155-6$ | 62 | $\mathbf{1 1}$ | $i-\mathrm{Bu}$ | Cy | $185-6$ | 47 |
| $\mathbf{1 d}$ | Me | $n-\mathrm{Bu}$ | $44-5$ | 56 | $\mathbf{1 m}$ | $s-\mathrm{Bu}$ | $n-\mathrm{Bu}$ | $136-8$ | 56 |
| $\mathbf{1 e}$ | Me | Ph | $122-3$ | 67 | $\mathbf{1 n}$ | $s-\mathrm{Bu}$ | Ph | $182-3$ | 60 |
| $\mathbf{1 f}$ | Me | Cy | $178-9$ | 53 | $\mathbf{1 0}$ | Bz | $n-\mathrm{Bu}$ | $108-9$ | 77 |
| $\mathbf{1 g}$ | $i-\mathrm{Pr}$ | $n-\mathrm{Bu}$ | $115-6$ | 73 | $\mathbf{1 p}$ | Bz | Ph | $119-20$ | 75 |
| $\mathbf{1 h}$ | $i-\mathrm{Pr}$ | Ph | $218-9$ | 60 | $\mathbf{1 q}$ | Bz | Cy | $206-7$ | 70 |
| $\mathbf{1 i}$ | $i-\mathrm{Pr}$ | Cy | $190-1$ | 69 |  |  |  |  |  |

Table 2 The yield (\%) and melting point $\left({ }^{\circ} \mathrm{C}\right)$ of adducts 2

| No. | R | $\mathrm{R}^{\prime}$ | mp | yield | No. | R | $\mathrm{R}^{\prime}$ | mp | yield |
| :---: | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 a}$ | H | Ph | $174-6$ | 50 | 2c | $i-\mathrm{Pr}$ | Ph | $194-5$ | 48 |
| 2b | Me | Ph | $165-6$ | 46 | 2d | Bz | Ph | $125-6$ | 62 |

## Results and Discussion

Compared the free ligand, the $v_{\mathrm{as}}\left(\mathrm{CO}_{2}\right)$ and $v(\mathrm{C}=\mathrm{N})$ of the complexes $\mathbf{1}$ shifted to low frequencies, which indicate that the carboxyl oxygen and the imino nitrogen atoms were coordinated to the tin atom ${ }^{2,4}$. The magnitude of $\Delta v\left(\mathrm{CO}_{2}\right)\left(v_{\mathrm{as}}-v_{\mathrm{s}}>210 \mathrm{~cm}^{-1}\right)$ showed the unidentate bonding through the carboxylate moiety ${ }^{2,8}$. A medium intensity band of $v(\mathrm{Sn}-\mathrm{O})$ was at around $550 \mathrm{~cm}^{-1}$. In complexes 2, the $v_{\mathrm{as}}\left(\mathrm{CO}_{2}\right)$ vibration shifted further to lower wavenumbers, confirming the interaction of $\mathrm{Ph}_{2} \mathrm{SnCl}_{2}$ with the carbonyl oxygen atom of complexes 1 . The appearance of spin-spin coupling between the azomethine proton and the tin nucleus $\left({ }^{3} J(\mathrm{SnN}=\mathrm{CH})=\sim 45 \mathrm{~Hz}\right)$ further confirmed the presence of nitrogen-tin coordination in all complexes. The $\delta_{\mathrm{C}}$ values of carbonyl $\mathrm{C}=\mathrm{O}$ in 1 downfield shifted ( $\Delta \delta=\sim 0.5$ ) compared with that in 2 due to the coordination of carbonyl to tin.

Figure 1 Molecular structure of 1f and 2c

1f


The results of X-ray single crystal diffractions of 1f and 2c are completely in agreement with these of spectral analysis (see Figure 1) ${ }^{9}$. In complex 1f, the coordination geometry about tin atom is a distorted trigonal bipyramid with two cyclohexyl groups ( C 1 and C 7 ) and the imino N 1 atom in equatorial positions and a unidentate carboxyl group oxygen O 2 and a phenoxide O 1 atom in axial sites $\left(\mathrm{O} 1-\mathrm{Sn}-\mathrm{O} 2=154.94(13)^{\circ}\right)$. The tin atom lies in the ligand plane and forms a fivemembered and a six-membered chelate ring with ligand. The complex $\mathbf{2}$ is a monomeric 1:1 donor-acceptor dinuclear tin compound. Each of the two tin atoms, Sn1 and Sn 2, has a five-coordination geometry in a distorted trigonal bipyramidal arrangement. The two phenyl groups ( $\mathrm{C} 15, \mathrm{C} 21$ ) and imino nitrogen take up the equatorial positions, while the carboxyl oxygen O 1 and phenoxide O 3 , take up the axial sites $(\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 3=$ $\left.157.37(11)^{\circ}\right)$ around the Sn 1 atom. The Sn 2 atom is surrounded by the carbonyl O2 and Cl 2 along the axial direction $\left(\mathrm{O} 2-\mathrm{Sn} 2-\mathrm{Cl} 2=171.14(9)^{\circ}\right)$ while the second Cl 1 atom and the C27 and C33 of two phenyl form the equatorial plane.

The primary antimicrobial test showed that these complexes possess moderate bactericidal activities. For example, the minimum inhibitory concentration of complex

2c against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Bacillus aerogenens is $25,50,25,125 \mu \mathrm{~g} / \mathrm{mL}$, respectively.

## Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 20173050).

## References and Notes

1. N. Ogwuru, L. E. Khoo, G. Eng, Appl. Organometal. Chem., 1998, 12, 409.
2. F. E. Smith, L. E. Khoo, N. K. Goh, R. C. Hynes, G. Eng, Can. J. Chem., 1996, 74, 2041.
3. T. S. B. Baul, S. Dutta, E. Rivarol, et al., J. Organometal. Chem., 2002, 654, 100.
4. F. E. Smith, R. C. Hynes, T. T. Ang, et al., Can. J. Chem., 1992, 70, 1114.
5. T. S. B. Baul, S. Dutta, E. Rivarol, et al., Appl. Organometal. Chem., 2001, 15, 947.
6. Selected analytical and spectral data: Compound 10, Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{Br}_{2} \mathrm{NO}_{3} \mathrm{Sn}$ : C, 43.81, H, 4.44, N, 2.13. Found: C, 43.53, H, 4.199, N, 2.01\%. IR (KBr) v: 1673 ((COO) $)_{\text {as }}$ ), $1608(\mathrm{C}=\mathrm{N}), 1379\left((\mathrm{COO})_{\mathrm{s}}\right), 549(\mathrm{Sn}-\mathrm{O}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 0.83(\mathrm{t}$, $\left.3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.96\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.26-1.74\left(\mathrm{~m}, 12 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Sn}\right)$, $3.02\left(\mathrm{dd}, 1 \mathrm{H}, J=9.3,13.9 \mathrm{~Hz}, \mathrm{CHHC}_{6} \mathrm{H}_{5}\right), 3.55\left(\mathrm{dd}, 1 \mathrm{H}, J=3.7,13.9 \mathrm{~Hz}, \mathrm{CHHC}_{6} \mathrm{H}_{5}\right), 4.21$ $\left(\mathrm{dd}, 1 \mathrm{H}, J=3.7,9.3 \mathrm{~Hz}, J\left({ }^{119} \mathrm{Sn}^{-1} \mathrm{H}\right)=39.8 \mathrm{~Hz}, \mathrm{CH}\right), 6.88(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{H}-2$ in $\left.\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 7.09-7.11\left(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{H}\right.$ in $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.28-7.31\left(\mathrm{~m}, 3 \mathrm{H}, m-\mathrm{H}+p-\mathrm{H}\right.$ in $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.39(\mathrm{~s}, 1 \mathrm{H}$, $\left.J\left({ }^{19} \mathrm{Sn}^{1} \mathrm{H}\right)=43.4 \mathrm{~Hz}, \mathrm{~N}=\mathrm{CH}\right), 7.79\left(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{H}-4\right.$ in $\left.\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 172.86(\mathrm{C}=\mathrm{O}), 171.36(\mathrm{CH}=\mathrm{N}), 163.76,141.98,136.09,118.30,118.14$, $107.41\left(\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 134.98,130.34,129.39$, $127.96\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 70.46(=\mathrm{NCH}), 42.02\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $27.07\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Sn}\right), 26.84\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Sn}\right)$, $26.78\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Sn}\right), 26.72\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Sn}\right)$, $22.56\left[J\left({ }^{19 / 117} \mathrm{Sn}^{1}{ }^{13} \mathrm{C}\right)=591.8 / 565.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Sn}\right], 22.36\left[J\left({ }^{119 / 117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=588.4 / 560.6 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{Sn}\right], 13.82\left(\mathrm{CH}_{3}\right), 13.65\left(\mathrm{CH}_{3}\right)$
7. Selected analytical and spectral data: Compound 2b, Anal. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{NO}_{3} \mathrm{Sn}_{2}$ : C, $42.29, H, 2.82$, N, 1.45. Found: C, 41.93, H, 2.79, N, 1.31\%. IR (KBr) v: 1612 ((COO) $)_{\text {as }}$ ), $1431\left((\mathrm{COO})_{\mathrm{s}}\right), 564(\mathrm{Sn}-\mathrm{O}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 1.55(\mathrm{~d}, 3 \mathrm{H}, J=7.3$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 4.31\left(\mathrm{q}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, J\left({ }^{119} \mathrm{Sn}^{-}{ }^{1} \mathrm{H}\right)=39.6 \mathrm{~Hz}, \mathrm{CHN}\right), 7.31(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{H}-2$ in $\left.\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right)$, 7.37-7.42 (m, $3 \mathrm{H}, m-\mathrm{H}+p-\mathrm{H}$ in $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.48-7.50\left(\mathrm{~m}, 3 \mathrm{H}, m-\mathrm{H}+p-\mathrm{H}\right.$ in $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $7.53-7.57\left(\mathrm{~m}, 6 \mathrm{H}, m-\mathrm{H}+p-\mathrm{H}\right.$ in $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.72-7.74\left(\mathrm{~m}, 4 \mathrm{H}, J\left({ }^{19 / 117} \mathrm{Sn}-{ }^{1} \mathrm{H}\right)=91.4 / 79.4 \mathrm{~Hz}, o-\mathrm{H}\right.$ in $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.80-7.83\left(\mathrm{~m}, 2 \mathrm{H}, J\left({ }^{119} \mathrm{Sn}^{-}{ }^{1} \mathrm{H}\right)=80.2 \mathrm{~Hz}, o-\mathrm{H}\right.$ in $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.95(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{H}-$ 4 in $\left.\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 7.97-7.99\left(\mathrm{~m}, 2 \mathrm{H}, J\left({ }^{19 / 117} \mathrm{Sn}-{ }^{1} \mathrm{H}\right)=90.9 / 78.4 \mathrm{~Hz}, o-\mathrm{H}\right.$ in $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 8.28(\mathrm{~s}, 1 \mathrm{H}$, $\left.J\left({ }^{119} \mathrm{Sn}-{ }^{-1} \mathrm{H}\right)=55.2 \mathrm{~Hz}, \mathrm{~N}=\mathrm{CH}\right) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$ ): $173.84(\mathrm{C}=\mathrm{O})$, $171.08(\mathrm{CH}=\mathrm{N})$, 163.54, 142.61, 136.51, 118.87, 118.77, $108.54\left(\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right), 136.70(i-\mathrm{C})$, $\left.136.58(o-\mathrm{C}), 131.53,131.43(p-\mathrm{C}), 129.60\left(J{ }^{119} \mathrm{Sn}{ }^{13} \mathrm{C}\right)=91.0 \mathrm{~Hz}\right), 129.50\left(J\left({ }^{119} \mathrm{Sn}{ }^{13} \mathrm{C}\right)=\right.$ $94.0 \mathrm{~Hz}, m-\mathrm{C})(\mathrm{ph}), 136.83(i-\mathrm{C}), 135.36\left(J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=62.5 \mathrm{~Hz}, o-\mathrm{C}\right), 132.04\left(J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=\right.$ 16.7 Hz, p-C), $129.96\left(J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=83.5 \mathrm{~Hz}, m-\mathrm{C}\right)\left(\mathrm{ph}_{2} \mathrm{SnCl}_{2}\right), 64.67(=\mathrm{NCH}), 22.54\left(\mathrm{CH}_{3}\right)$
8. G. B. Deacon, F. Huber, R. J. Phillips, Coord. Chem. Rev., 1980, 33, 227.
9. Crystal structure determinations of $\mathbf{1 f}$ and $\mathbf{2 c}$ : Intensity data were collected at 293 K on a Rigaku RAXIS-RAPID diffractometer. The crystal data were as follows: 1f, $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{Br}_{2} \mathrm{NO}_{3} \mathrm{Sn}$, Monoclinic, Space group $P 2_{1} / \mathrm{c}, \mathrm{a}=16.0018(14), \mathrm{b}=10.3245(10)$, $\mathrm{c}=$ $15.4417(17) \AA, \beta=109.846(6)^{\circ}, \mathrm{V}=2399.6(4) \AA^{3}, \mathrm{Z}=4, \mathrm{R}=0.0378, w \mathrm{R}=0.0832$. 2c, $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{NO}_{3} \mathrm{Sn}_{2}$, triclinic, space group $P-1$, $\mathrm{a}=12.0476(5), \mathrm{b}=12.3358(4)$, $\mathrm{c}=$ $14.1244(5) \AA, \alpha=79.597(2), \beta=79.604(2), \gamma=64.512(2)^{\circ}, \mathrm{V}=1851.16(12) \AA^{3}, \mathrm{Z}=2, \mathrm{R}=$ $0.0346, w \mathrm{R}=0.0810$.

Received 12 January, 2004


[^0]:    * E-mail: shangzc@mail.hz.zj.cn

